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We address the properties and dynamical stability of one-dimensional vector lattice solitons in a Kerr-type
cubic medium with harmonic transverse modulation of the refractive index. We discovered that unstable
families of scalar lattice solitons can be stabilized via cross-phase modulation(XPM) in the vector case. It was
found that multihumped vector solitons that are unstable in uniform media where the XPM strength is higher
than that of self-phase modulation can also be stabilized by the lattice.
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I. INTRODUCTION

Light propagation in media whose properties vary peri-
odically in the transverse direction exhibits a wealth of prac-
tically interesting phenomena including the formation of
stable localized structures, which find applications in many
branches of modern physics, including waves in molecular
chains[1], trapped Bose-Einstein condensates[2], or solids
[3]. In nonlinear optics discrete solitons have been exten-
sively studied and observed in periodic arrays of weakly
coupled waveguides[4]. Such strongly localized modes
might be used to test all-optical switching and routing con-
cepts. Recently it was shown that lattices constituted by con-
tinuous nonlinear media with an imprinted harmonic modu-
lation of the refractive index offer a number of additional
opportunities for the manipulation of light signals[5]. Scalar
solitons in the harmonic lattices were observed in photore-
fractive crystals[6] and analyzed in Refs[7,8].

However, the interaction between several light waves can
considerably enrich the dynamics of their propagation and
open additional perspectives for cross stabilization and all-
optical soliton phenomena. In uniform media, two-
component bright vector solitons were studied for coherent
[9] and incoherent[10] interactions. Strongly localized vec-
torial discrete modesin arrays of evanescently coupled
waveguides and their stability were reported in Ref.[11].
Very recently coupling between mutually incoherent solitons
belonging to the different bands of the transmission spectrum
of periodic lattices was discussed[12], while vector solitons
were observed in AlxGa1−xAs nonlinear waveguide arrays
[13]. However, the investigation of the properties and stabil-
ity of vector solitons in optical lattices, which can be quali-
tatively and quantitatively altered by variation of the proper-
ties of the lattice, is an open problem.

In this work we perform a detailed analysis of the prop-
erties and dynamical stability of one-dimensional vector lat-
tice solitons in both focusing and defocusing cubic media.
We reveal that cross-phase modulation(XPM) results in sta-
bilization of even(in focusing media) and twisted(in defo-
cusing media) soliton components that are known to be
highly unstable in the scalar case. We show that, in contrast

to solitons in uniform media, vector lattice solitons can be
made stable if the XPM strength exceeds that of self-phase
modulation. We also reveal the existence of stable multi-
humped vector complexes in which one component is stabi-
lized by the lattice, while the other one is stabilized by XPM.

II. MODEL

We address the propagation of coupled laser beams along
the j axis in media with a periodic modulation of the linear
refractive index in theh direction, described by the system
of coupled nonlinear Schrödinger equations
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whereh andj are scaled to the beam width and diffraction
length, respectively;C is the XPM parameter;s= 71 for the
focusing and defocusing media;p is the guiding parameter;
the functionRshd=coss2ph /Td describes the refractive in-
dex profile; andT is the lattice period. The XPM coefficient
in Eqs. (1) depends on the particular settings and materials
involved. Thus for mutually incoherent light beamsC=1
[10,14], while for coherent orthogonally polarized beams in-
teracting in highly birefringent mediaC=2 [9,15]. The pa-
rameterC can acquire quite high values in organic materials
[9]. Notice also that photorefractive crystals offer additional
possibilities for manipulation of the XPM coupling, by vary-
ing the polarization of the light beams or the elements of the
electro-optic tensor involved[6]. Equations(1) admit several
conserved quantities including the totalU and partialU1,2
energy flows:

U = U1 + U2 =E
−`

`

suq1u2 + uq2u2ddh. s2d
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III. VECTOR SOLITON FAMILIES

Stationary solutions of Eqs.(1) have the formq1,2sj ,hd
=w1,2shdexpsib1,2jd, where w1,2shd are real functions and
b1,2 are real propagation constants. Lattice soliton families
are defined byb1,2, the lattice periodT, and the parametersp
and C. Since one can use the scaling transformation
q1,2sh ,j ,p,Cd→xq1,2sxh ,x2j ,x2p,Cd to obtain various
families of solutions from a given one, the transverse scale
was selected in such a way that the modulation periodT
=p /2 is a constant, andb1,2, p, andC are variable param-
eters. Upon linear stability analysis we searched for per-
turbed solutions of Eqs.(1) in the form q1,2sh ,jd=fw1,2shd
+u1,2sh ,jd+ iv1,2sh ,jdgexpsib1,2jd, where the realu1,2 and
imaginaryv1,2 parts of the small perturbation can grow with
a complex growth rated. The standard linearization proce-
dure around the stationary solutionw1,2 for Eqs. (1) yields
the linear eigenvalue problem
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for the perturbation componentsu1,2,v1,2, which was solved
numerically. The scaling transformation mentioned above
predicts changes of the growth rate for unstable solitons with
identical functional profiles supported by lattices with differ-
ent periods. For example, if the lattice period becomesx
times smaller then the corresponding growth rate increases
x2 times.

We start our analysis by recalling the properties ofscalar
lattice solitons. There exist odd, even, and twisted scalar lat-
tice solitons. In focusing media odd solitons are stable, even
ones are unstable, and twisted ones are stable above a certain
energy threshold. Defocusing media support stable odd and
even solitons, but twisted solitons are unstable. The simplest
vector soliton solutions are formed atb1=b2, when w1shd
=wshdcosf , w2shd=wshdsinf, where wshd is the scalar
soliton profile, andf is a phase. The most interesting situa-
tion occurs atb1øb2, when the first and second components
have different types of symmetry. Below we focus on the
simplest self-sustained structures, having a twisted first com-
ponentw1. Such vector solitons can be classified according
to the field distribution in the second component.

A. Odd solitons in focusing media

The properties ofodd vector solitons in focusing media
are summarized in Fig. 1 atC=1. At low energy flows the

second component of the odd soliton has a single well-
defined maximum coinciding with the local maximum of
Rshd, so that the field distribution in both second and first
components is asymmetric[Fig. 1(b)]. There exist lower and
upper cutoffs onb1 at fixed b2 and p [Fig. 1(a)]. As b1 ap-
proaches the upper cutoff, the second component develops
two equal humps located on neighboring lattice sites; this
means that the odd vector soliton transforms into the even
one. At the lower cutoff the odd soliton ceases to exist. En-
ergy flow versusb1 is shown in Fig. 1(a) at fixedb2 and p.
The energy flow drops off with growth of the guiding param-
eter at fixedb1 andb2. At U ,U1,2→`, the odd vector soliton
transforms into weakly coupled scalar and vector solitons
located at neighboring sites. The area of existence of the odd
soliton first expands and then shrinks with growth of the
guiding parameterp [Fig. 1(c)] for fixed b2, so odd solitons
cease to exist when the guiding parameterp exceeds the
critical value. The width of the existence area increases with
growth of b2. Notice that there is lower threshold onb2 for
the existence of odd solitons.

B. Even solitons in focusing media

The properties ofevenvector solitons(composed of the
twisted first and even second components) are summarized
in Fig. 2. The second component has two equal intensity
maxima located on neighboring sites[Fig. 2(b)]. The total
energy flow decreases monotonically with growth ofb1 at

FIG. 1. (a) Energy flow of odd soliton versus propagation con-
stantb1 at b2=3 and various guiding parameters.(b) Profile of odd
soliton atb1=0.7,b2=1.5,p=2. (c) Areas of stability and instability
(shaded) for odd solitons onsb1,pd plane atb2=3. (d) Stable propa-
gation of odd soliton depicted in(b) in the presence of white noise
with variance s1,2

2 =0.01. In (d) only the second component is
shown. Focusing mediums=−1,C=1. All quantities are plotted in
arbitrary dimensionless units.
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fixed b2,p, and drops off with increase ofp at fixed b1,b2
[Fig. 2(a)]. There are lower and upper cutoffs onb1. At the
lower cutoffw1→0, and the vector soliton transforms into an
even scalar soliton, while at the upper cutoffw2→0, and it
converts into a twisted scalar soliton. The existence area of
the even soliton expands with decrease of the guiding param-
eterp and slightly changes with growth ofb2 [Fig. 2(c)].

C. Soliton stability in focusing media

The results of the stability analysis are summarized in
Figs. 1 and 2. We have found thatodd vector solitons are
stable almost in the whole domain of their existence[Fig.
1(c)], a result confirmed by numerical integration of Eqs.(1)
in the presence of input noise[Fig. 1(d)]. The linear stability
analysis also revealed the existence of stability bands for
evenvector solitons. They turn out to be stable when the
amplitude of the first twisted component becomes large
enough. Therefore XPM can stabilize the otherwise unstable
soliton component. This is one of the most important results
of this work.

Soliton stabilization occurs because of local increase of
the refractive index in neighboring lattice sites created by
stable twisted component via XPM. This local increase pre-
vents the even component from decaying into the odd one
under the action of perturbations. The onset of stability is
dictated by the peak amplitude or energyU1 of the twisted
component, the ratioU1/U2, and the depth of the optical

lattice that can be flexibly controlled in distinction from dis-
crete systems. Since the lower amplitudes are necessary to
support solitonlike propagation in deeper lattices, stabilizing
action of the twisted component and the width of the stability
domain decrease with growth ofp. Notice that the upper
boundary of the instability domain for the even vector soliton
coincides with the upper cutoff for the odd one, i.e., the latter
transforms into the stable even soliton at the upper cutoff.
Figure 2(d) illustrates the stable propagation of the even lat-
tice soliton perturbed by noise.

D. Odd and even solitons in defocusing media

Optical lattices in defocusing media also support vector
solitons, but those are typically wider than their counterparts
in focusing media. The energy flow of theevensoliton versus
b1 is depicted in Fig. 3(a), while Fig. 3(b) shows the profile
of such a soliton. The energy flow increases with growth ofp
at fixedb1,b2. Notice that in defocusing media at the upper
cutoff onb1 the first component vanishes and the vector soli-
ton transforms into the even scalar one, while at the lower
cutoff on b1 the second component vanishes and one gets a
twisted scalar soliton. The area of existence for even solitons
on the sb1,pd plane broadens with decrease of the guiding
parameter[Fig. 3(c)] at fixedb2. The width of the existence
area onb1 decreases linearly with growth of the propagation
constantb2 at fixedp, so that above a certain threshold onb2
even solitons cease to exist. We have also foundodd vector
solitons in a defocusing medium[Fig. 3(e)]. Its first compo-
nent transforms into a linear Bloch wave at the lower cutoff
on b1, while the second one remains localized. The odd soli-
ton converts into the stable even soliton at the upper cutoff
on b1.

E. Soliton stability in defocusing media

Results of the stability analysis are summarized in Fig.
3(c). We discovered the existence of a stability band for even
vector solitons. Thus in defocusing optical media the twisted
first component(which is unstable alone) can be stabilized
through XPM interaction with the stable even second com-
ponent. Cross stabilization takes place if the amplitude of the
second even component is large enough, actually near the
upper cutoff for existence. The stability area for even vector
solitons shrinks at lowp. Figure 3(d) shows stable propaga-
tion of the even soliton in defocusing media in the presence
of white input noise. The stability analysis for odd solitons
becomes complicated near the lower cutoff(area of weak
localization) but we have found that they are stable near the
upper edge of the existence domain onb1 [Fig. 3(f)]. The
important result is that the combined action of the lattice and
XPM enables stabilization of vector solitons ofhigh order, to
be perhaps referred to asvector soliton trains, with a com-
plex multihumped intensity profile, when one of the compo-
nent’s is a scalar soliton train.

F. Impact of XPM strength on soliton stability

We also analyzed the impact of XPM strength on the sta-
bility of vector lattice solitons. The most important result is

FIG. 2. (a) Energy flow of even soliton versus propagation con-
stantb1 at b2=3 and various guiding parameters.(b) Profile of even
soliton atb1=1.65,b2=2,p=2. (c) Areas of stability and instability
(shaded) for even solitons onsb1,pd plane atb2=3. (d) Stable
propagation of even soliton depicted in(b) in the presence of white
noise with variances1,2

2 =0.01. In(d) only the second component is
shown. Focusing mediums=−1,C=1. All quantities are plotted in
arbitrary dimensionless units.
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that the stability window for bright even lattice solitons ex-
ists at CÞ1 [Fig. 4(a)] in contrast to the case of uniform
media, where multihumped vector solitons are unstable at
C.1 in the entire domain of their existence, and the width
of the stability window can be increased with increase of
lattice depth. Notice that the even soliton component van-
ishes at the lower cutoff onb1 at C*1.03 thus resulting in
stabilization of the vector soliton, while atC,1.03 the even
component vanishes at the upper cutoff[Fig. 4(a)].

Stabilization via XPM is also possible when the first soli-
ton component is subject to the influence of the latticesp
Þ0d while for the second component the medium is uniform
sp=0d. It was revealed that XPM may result in a completely
stable twisted-twisted soliton combination[Fig. 4(b)] that

does not exist in a uniform medium. In this case even the
weak first “lattice” component can capture and stabilize the
strong second “uniform” component. The existence and sta-
bility domains broaden with growth of the lattice depth in the
first component[Fig. 4(c)]. Because of the alternating sign of
the “lattice” component in neighboring sites, the “uniform”
component also acquires a multihumped structure[Fig. 4(e)],
but still shows stable propagation[Fig. 4(f)].

IV. CONCLUSIONS

In conclusion, we analyzed the properties of vector lattice
solitons in cubic nonlinear media with harmonic transverse

FIG. 3. (a) Energy flow of even soliton versus propagation con-
stant b1 at b2=−1 and various guiding parameters.(b) Profile of
even soliton atb1=−1.36,b2=−1,p=5. (c) Areas of stability and
instability (shaded) for even solitons onsb1,pd plane atb2=−1. (d)
Stable propagation of even soliton depicted in(b) in the presence of
white noise with variances1,2

2 =0.01. (e) Profile of odd soliton at
b1=−1.6,b2=−1,p=5. (f) Stable propagation of odd soliton de-
picted in (e) in the presence of white noise with variances1,2

2

=0.01. In(d) and(f) only the first component is shown. Defocusing
medium s=1,C=1. All quantities are plotted in arbitrary dimen-
sionless units.

FIG. 4. (a) Areas of stability and instability(shaded) for even
solitons onsC,b1d plane atb2=3,p=2. (b) Profile of twisted soliton
in the uniform medium supported by twisted lattice soliton atb1

=3.8,b2=2,p=4, and(c) areas of stability and instability(shaded)
for such solitons on thesb1,pd plane atb2=2. (d) Stable propaga-
tion of soliton depicted in(b) in the presence of white noise.(e)
Profile of three-humped soliton in a uniform medium supported by
twisted lattice soliton atb1=3.57,b2=2,p=4, and (f) its stable
propagation in the presence of white noise. In(d) and (f) only the
second component is shown. Focusing mediums=−1. All quanti-
ties are plotted in arbitrary dimensionless units.
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modulation of the linear refractive index, and discovered that
stable propagation sustained by XPM is possible even if one
of the soliton components is otherwise unstable. Here we
reported only the simplest examples of vector lattice solitons
but the results are expected to hold for more general settings
and for richer field distributions, including the formation of
stable soliton trains. We stress that the combined action of
the lattice with tunable strength and XPM offers opportuni-
ties not only to alter thequantitativecharacteristics of soli-

tons, but also to control theirqualitative features, including
their topological structure and stability.
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