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Stabilization of vector solitons in optical lattices
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We address the properties and dynamical stability of one-dimensional vector lattice solitons in a Kerr-type
cubic medium with harmonic transverse modulation of the refractive index. We discovered that unstable
families of scalar lattice solitons can be stabilized via cross-phase modul#d) in the vector case. It was
found that multihumped vector solitons that are unstable in uniform media where the XPM strength is higher
than that of self-phase modulation can also be stabilized by the lattice.
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I. INTRODUCTION to solitons in uniform media, vector lattice solitons can be
Light propagation in media whose properties vary peri_made stable if the XPM strength exceeds that of self-phase

odically in the transverse direction exhibits a wealth of pracmodulation. We also reveal the existence of stable multi-
tically interesting phenomena including the formation of humped vector complexes in which one component is stabi-
stable localized structures, which find applications in manyized by the lattice, while the other one is stabilized by XPM.

branches of modern physics, including waves in molecular
chains[1], trapped Bose-Einstein condensafk or solids

[3]. In nonlinear optics discrete solitons have been exten-

sively studied and observed in periodic arrays of weakly \we address the propagation of coupled laser beams along
coupled waveguideg4]. Such strongly localized modes the ¢ axis in media with a periodic modulation of the linear

might be used to test all-optical switching and routing con-refractive index in they direction, described by the system
cepts. Recently it was shown that lattices constituted by consf coupled nonlinear Schrodinger equations

tinuous nonlinear media with an imprinted harmonic modu-

Il. MODEL

lation of the refractive index offer a number of additional ag, 1
opportunities for the manipulation of light signdf. Scalar 'a_g =- o7 + 00,(]qy)? + Clau|?) - pR(7)qy,
solitons in the harmonic lattices were observed in photore- 7
fractive crystalg6] and analyzed in Refg/,8].
However, the interaction between several light waves can 00, 159, 5 5
considerably enrich the dynamics of their propagation and e T 2R +00(Clay|* +[d2l°) - PRIz, (D)

open additional perspectives for cross stabilization and all-

optical soliton ~phenomena. In uniform media, WO-\ here, and¢ are scaled to the beam width and diffraction
component bright vector solitons were studied for coherenfength respectivelyC is the XPM parameterr= T 1 for the
[9]_and.incoherenE10] .interactions. Strongly localized vec- focusing and defocusing medip;is the guiding parameter:
torial discrete modesin arrays of evanescently coupled . functionR(7)=cog277/T) describes the refractive in-

waveguides and their stability were reported in Rdfl]. 4o, profile; andT is the lattice period. The XPM coefficient
Very recently coupling between mutually incoherent solltonsIn Egs. (1) depends on the particular settings and materials

belonging to the different bands of the transmission spectrun),yoived. Thus for mutually incoherent light bean®s=1

of periodic Iatticgs was discuss{aﬂg], while vector solitons [10,14, while for coherent orthogonally polarized beams in-
were observed in A“Gai‘. AS. nonlinear Wavegwde arrays teracting in highly birefringent medi€=2 [9,15. The pa-
.[13]' However, 'ghe myeshggﬂon Of the pr'opertles and St‘?‘b”'rameterc can acquire quite high values in organic materials
|ty_0f vector sohto_ns n optical Iatt'CeSNh'Ch can be quali- [9]. Notice also that photorefractive crystals offer additional
tfat|vely and ql_Jant|_tat|ver altered by variation of the Ioroloer'possibilities for manipulation of the XPM coupling, by vary-
ties of the lattice, is an open problem. ing the polarization of the light beams or the elements of the

In this work we perform a detailed analysis of the prop- - ; ; ;
. i . ; : electro-optic tensor involvefb]. Equationg1) admit several
erties and dynamical stability of one-dimensional vector lat- b (61 Eq L)

tice solitons in both focusing and defocusing cubic mediagﬁgfge;\/f?gwgyammes including the totd and partialUy ,
We reveal that cross-phase modulat{ai®M) results in sta- '

bilization of even(in focusing mediaand twisted(in defo- %

cusing media soliton components that are known to be U:U1+U2:J (|ga? +|gz|?d 7. (2)
highly unstable in the scalar case. We show that, in contrast —0
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Ill. VECTOR SOLITON FAMILIES

6.7
Stationary solutions of Eqgl) have the forma »(¢, 7) (&
=wy o p)expliby -€), wherew; o(n) are real functions and = ;5]
b, , are real propagation constants. Lattice soliton families &3 2.
are defined by, ,, the lattice period’, and the parameters
and C. Since one can use the scaling transformation
017, €,p,C) — xt o(x7, x°¢€,x°p,C) to obtain various A
families of solutions from a given one, the transverse scale 3 12 21 3.0
was selected in such a way that the modulation pefiiod parameter b,
=m/2 is a constant, ant, ,, p, andC are variable param-
eters. Upon linear stability analysis we searched for per-
turbed solutions of Eqgl) in the formaqy o7, &) =[wy A7)
+Up o(m, &) +ivy o7, ) ]expliby ,€), where the real, , and
imaginaryv, , parts of the small perturbation can grow with
a complex growth rateS. The standard linearization proce-
dure around the stationary solution , for Egs. (1) yields
the linear eigenvalue problem
1d%, ’ 1 2 3
ouy = 2 dif +[o(W + Cwp) + byJvy — pRuy, parameter by

-
[\]

ener
ot
profile

43 p=3

(c)

(=

parameter p
I}D —

2
Svq = }ﬂ — [0(3\,\,5 + C\/\é) +b;Ju; = 20CwWyWsU, + pRU;, FIG. 1. (a) Energy fIc_>w of oc_id_ soliton versus propggation con-
2 d772 stantb; atb,=3 and various guiding paramete(b) Profile of odd
soliton ath;=0.7 b,=1.5,p=2. (c) Areas of stability and instability
1 d202 (shadeglfor odd solitons oriby, p) plane atb,=3. (d) Stable propa-
Uy =~ 2d + [U(Wg + CW%) +D,]v, - pRu,, gation of odd soliton depicted ifb) in the presence of white noise
Y with variance 0{2:0.01. In (d) only the second component is
5 shown. Focusing medium=-1,C=1. All quantities are plotted in
Svp= %(Z_:;Zz _ [o-(3vv§ + vaf) + by]uy — 20CWW,U; + pRU, arbitrary dimensionless units.

(3)  second component of the odd soliton has a single well-
_ ) defined maximum coinciding with the local maximum of

for the perturbation components ,,v, ,, Which was solved  R(;), so that the field distribution in both second and first
numerically. The scaling transformation mentioned abOVQ:omponents is asymmetrjig. 1(b)]. There exist lower and
predicts changes of the growth rate for unstable solitons Witrg”:,p(_:‘r cutoffs orb, at fixedb, and p [Fig. 1(a)]. As b, ap-
identical functional profiles supported by lattices with differ- proaches the upper cutoff, the second component develops
ent periods. For example, if the lattice period becorges 1o equal humps located on neighboring lattice sites; this
times smaller then the corresponding growth rate increaségeans that the odd vector soliton transforms into the even
X~ times. ) . ) one. At the lower cutoff the odd soliton ceases to exist. En-

We start our analysis by recalling the propertiescdlar ergy flow versus, is shown in Fig. 1a) at fixedb, and p.
lattice solitons. There exist odd, even, and twisted scalar latrpe energy flow drops off with growth of the guiding param-
tice solitons. In focusing media odd solitons are stable, evegier at fixedb, andb,. At U,U; ,—, the odd vector soliton
ones are unstable, and twisted ones are stable above a certgifhsforms into weakly coup'led scalar and vector solitons
energy threshold. Defocusing media support stable odd andcated at neighboring sites. The area of existence of the odd
even solitons, but twisted solitons are unstable. The simplesiton first expands and then shrinks with growth of the
vector soliton solutions are formed bi=b,, -when wi(7) guiding parametep [Fig. 1(c)] for fixed b,, so odd solitons
=W(7)cose, Wy(n)=W(z)sing, wherew(n) is the scalar cease to exist when the guiding paramepeexceeds the
soliton profile, andg is a phase. The most interesting situa- critical value. The width of the existence area increases with
tion occurs ab; <b,, when the first and second componentsgrowth of b,. Notice that there is lower threshold dm for
have different types of symmetry. Below we focus on thethe existence of odd solitons.
simplest self-sustained structures, having a twisted first com-
ponentw;. Such vector solitons can be classified according
to the field distribution in the second component. B. Even solitons in focusing media

The properties okvenvector solitons(composed of the
twisted first and even second compongrdge summarized
in Fig. 2. The second component has two equal intensity
The properties obdd vector solitons in focusing media maxima located on neighboring sitg§sig. 2(b)]. The total
are summarized in Fig. 1 &=1. At low energy flows the energy flow decreases monotonically with growthbafat

A. Odd solitons in focusing media
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T4 18 lattice that can be flexibly controlled in distinction from dis-
N 0o] crete systems. Since the lower amplitudes are necessary to
' support solitonlike propagation in deeper lattices, stabilizing
action of the twisted component and the width of the stability
domain decrease with growth qf. Notice that the upper
boundary of the instability domain for the even vector soliton
(a) p:2~5\ coincides with the upper cutoff for the odd one, i.e., the latter
15 237 259 281 35 15 05 25 45 transforms into the stable even soliton at the upper cutoff.
parameter b n/T Figure 2d) illustrates the stable propagation of the even lat-
tice soliton perturbed by noise.

energy U
J
profile

(C) (d) : D. Odd and even solitons in defocusing media

Optical lattices in defocusing media also support vector
solitons, but those are typically wider than their counterparts
in focusing media. The energy flow of tegensoliton versus
b, is depicted in Fig. &), while Fig. 3b) shows the profile
of such a soliton. The energy flow increases with growtp of
at fixedby,b,. Notice that in defocusing media at the upper
cutoff onb, the first component vanishes and the vector soli-
ton transforms into the even scalar one, while at the lower
cutoff on b, the second component vanishes and one gets a

FIG. 2. (a) Energy flow of even soliton versus propagation con- twisted scalar soliton. The area of existence for even solitons
stantb, atb,=3 and various guiding paramete(b) Profile of even on the(bl,p? plane brqadens with deprease of thg guiding
soliton atb;=1.65 b,=2,p=2. (c) Areas of stability and instability parametefFig. 3c)] at_ fixedb,. _The width of the eXIStenC_e
(shadedl for even solitons on(by,p) plane atb,=3. (d) Stable area orb; decreases linearly with growth of the propagation
propagation of even soliton depicted(in) in the presence of white COnstanb, at fixedp, so that above a certain thresholdkpn
noise with variancer? ,=0.01. In(d) only the second component is €ven solitons cease to exist. We have also foodd vector
shown. Focusing medium=-1,C=1. All quantities are plotted in ~ Solitons in a defocusing mediuffig. 3e)]. Its first compo-
arbitrary dimensionless units. nent transforms into a linear Bloch wave at the lower cutoff
on by, while the second one remains localized. The odd soli-
ton converts into the stable even soliton at the upper cutoff
on b;.

parameter p

0 1 2 3
parameter b,

fixed b,,p, and drops off with increase qf at fixed by, b,
[Fig. 2a)]. There are lower and upper cutoffs bn At the
lower cutoffw; — 0, and the vector soliton transforms into an
even scalar soliton, while at the upper cuteff— 0, and it E. Soliton stability in defocusing media

converts into a twisted scalar soliton. The existence area of poo its of the stability analysis are summarized in Fig.

the even soll.ton expands W'th. decrease of the_ guiding Paramy ¢ we discovered the existence of a stability band for even
eterp and slightly changes with growth % [Fig. 2c)]. vector solitons. Thus in defocusing optical media the twisted
first componeniwhich is unstable alonecan be stabilized
through XPM interaction with the stable even second com-
. . i _ ponent. Cross stabilization takes place if the amplitude of the
_ The results of the stability analysis are summarlzed iRsecond even component is large enough, actually near the
Figs. 1 and 2. We have found thadd vector solitons are  pper cutoff for existence. The stability area for even vector
stable almost in the whole doma_m of their gmsterﬁE&g. solitons shrinks at lovp. Figure 3d) shows stable propaga-
1(0)], a result confirmed by numerical integration of E@S.  tion of the even soliton in defocusing media in the presence
in the presence of input noigkig. 1(d)]. The linear stability  of white input noise. The stability analysis for odd solitons
analysis also revealed the existence of stability bands fopecomes complicated near the lower cut@fea of weak
evenvector solitons. They turn out to be stable when thegcajization but we have found that they are stable near the
amplitude of the first twisted component becc_)mes IargegJploer edge of the existence domain lon[Fig. 3f)]. The
enough. Therefore XPM can stabilize the otherwise unstablgnportant result is that the combined action of the lattice and
soliton component. This is one of the most important resultsp enables stabilization of vector solitonstagh order; to
of this work. be perhaps referred to agctor soliton trainswith a com-

Soliton stabilization occurs because of local increase ofpjex multihumped intensity profile, when one of the compo-

stable twisted component via XPM. This local increase pre-
vents the even component from decaying into the odd one
under the action of perturbations. The onset of stability is
dictated by the peak amplitude or eneigdy of the twisted We also analyzed the impact of XPM strength on the sta-
component, the ratidJ,/U,, and the depth of the optical bility of vector lattice solitons. The most important result is

C. Soliton stability in focusing media

F. Impact of XPM strength on soliton stability
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FIG. 3. (a) Energy flow of even soliton versus propagation con-
stantb, at b,=-1 and various guiding paramete(b) Profile of
even soliton at;=-1.36 b,=-1,p=5. (c) Areas of stability and
instability (shadegl for even solitons oriby, p) plane atb,=-1. (d)
Stable propagation of even soliton depictedbpin the presence of
white noise with variance121,2=0.01.(e) Profile of odd soliton at
b;=-1.6 b,=-1,p=5. (f) Stable propagation of odd soliton de-
picted in (e) in the presence of white noise with varianc'/é2
=0.01. In(d) and(f) only the first component is shown. Defocusing
mediumo=1,C=1. All quantities are plotted in arbitrary dimen-
sionless units.

FIG. 4. (a) Areas of stability and instabilityshadegl for even
solitons on(C, b,) plane ath,=3,p=2. (b) Profile of twisted soliton
in the uniform medium supported by twisted lattice solitonbat
=3.8 b,=2,p=4, and(c) areas of stability and instabilitgshadedl
for such solitons on théb;,p) plane atb,=2. (d) Stable propaga-
tion of soliton depicted inb) in the presence of white noisé)
Profile of three-humped soliton in a uniform medium supported by
twisted lattice soliton at;=3.57 b,=2,p=4, and (f) its stable
propagation in the presence of white noise(dhand (f) only the
second component is shown. Focusing mediga-1. All quanti-
ties are plotted in arbitrary dimensionless units.
that the stability window for bright even lattice solitons ex-
ists atC+# 1 [Fig. 4@)] in contrast to the case of uniform
media, where multihumped vector solitons are unstable afloes not exist in a uniform medium. In this case even the
C>1 in the entire domain of their existence, and the widthweak first “lattice” component can capture and stabilize the
of the stability window can be increased with increase ofstrong second “uniform” component. The existence and sta-
lattice depth. Notice that the even soliton component vanbility domains broaden with growth of the lattice depth in the
ishes at the lower cutoff ob; at C=1.03 thus resulting in  first componenfFig. 4(c)]. Because of the alternating sign of
stabilization of the vector soliton, while &t<1.03 the even the “lattice” component in neighboring sites, the “uniform”
component vanishes at the upper cuféfig. 4a)]. component also acquires a multihumped strucfiig. 4(e)],

Stabilization via XPM is also possible when the first soli- but still shows stable propagatigfig. 4(f)].
ton component is subject to the influence of the latiipe
# 0) while for the second component the medium is uniform
(p=0). It was revealed that XPM may result in a completely
stable twisted-twisted soliton combinatigirig. 4(b)] that

IV. CONCLUSIONS

In conclusion, we analyzed the properties of vector lattice
solitons in cubic nonlinear media with harmonic transverse
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modulation of the linear refractive index, and discovered thatons, but also to control thegualitative features, including
stable propagation sustained by XPM is possible even if onéheir topological structure and stability.

of the soliton components is otherwise unstable. Here we
reported only the simplest examples of vector lattice solitons
but the results are expected to hold for more general settings
and for richer field distributions, including the formation of  This work has been partially supported by the Generalitat
stable soliton trains. We stress that the combined action ade Catalunya, by the Spanish Government through Grant No.
the lattice with tunable strength and XPM offers opportuni-BFM2002-2861, and by the Russian Foundation for Basic
ties not only to alter theguantitativecharacteristics of soli- Research through Grant No. 03-02-16370.
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